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Abstract

This project explores the use of WebGPU, a new graphics API, for direct volume

visualization of tetrahedral meshes. This project began by the need to efficiently render

complex, unstructured datasets using WebGPU’s feature set to implement direct volume

visualization for a tetrahedral mesh. The renderer traverses the tetrahedral mesh sequentially,

accumulating color and alpha values. This continues until the ray exits the mesh. A custom

triangle-tetrahedron map data structure facilitates efficient mesh traversal. This report details

the development process, including challenges encountered due to WebGPU’s changing

nature and limitations in its feature set, such as the lack of WebGL’s gl_PrimitiveID in the

fragment shader. The renderer is capable to visualize the turbulence around a golf ball, but

currently faces performance limitations when handling large meshes due to CPU-intensive

pre-processing steps. Future work will focus on moving these pre-processing steps to

WebGPU compute shaders to improve performance and enable the visualization of larger,

more complex datasets.
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Chapter 1: Background - Volume Rendering

Volume Rendering

Scientists often want to learn insight about the data they generate, and a popular way to

do so is through visualization, specifically volume rendering. Using techniques developed

in computer graphics such as ray tracing, global illumination, shadows, etc., scientists can

detect useful patterns in their datasets that they wouldn’t have known otherwise. Typically,

this is done through marching a ray through a structured grid of voxels that make up the

volume. For unstructured data, we can use tetrahedral marching, which marches a ray

through a tetrahedral mesh accumulating the color and alpha channels of the volume. The

mesh is traversed by going from one tetrahedron to the next, until the ray exits the mesh.

WebGPU is a new graphics API for the web, replacing the now aging WebGL. WebGPU

is an abstraction layer on top of the newer graphics APIs such as Directx12, Vulkan, and

Metal. Depending on the underlying hardware, WebGPU will default to using one of these

three. WebGPU provides compute shaders which allow access to the GPU for non-graphics

workloads (GPGPU). The goal of this project is to take advantage of the new features this

graphics API can provide to accelerate marching a ray through a tetrahedral mesh.

1
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Volume Rendering Math

We need to model how rays from a light source are absorbed, emitted, and scattered by a

medium. To do so, we use what is known as the emission-absorption model. This model

only computes lighting for rays that hit the target directly. Rays passing through the volume

are weakened due to the medium [3].

C(r) =
∫ L

0
C(s)µ(s)e−

∫ s
0 µ(t)dtds

As the ray passes through the voume, we integrate the emitted color C(s) and absorption

µ(s) at each point s along the ray. The emitted color at each point is weakened as it returns

to the eye by the volume’s absorption up to that point (e−
∫ S

0 µ(t)dt) [3].

We approximate the integral using a numeric approximatation. This is done by taking

a set of N samples along the ray on the interval s = [0,L], each a distance ∆s apart, and

summing the samples together. The weakening term at each sample point becomes a product

series, adding the absorption at previous samples [3].

C(r) =
N

∑
i=0

C(i∆s)µ(i∆s)∆s
i−1

∏
j=0

e−µ( j∆s)∆s

We can approximate the attenuation term e−µ(i∆s)∆s by its Taylor series. We also

introduce alpha α(i∆s) = µ(i∆s)∆s. Front-to-back alpha compositing equation:

C(r) =
N

∑
i=0

C(i∆s)α(i∆s)
i−1

∏
j=0

(1−α( j∆s))

2
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The above equation works like a for loop. It accumulates color and opacity iteratively.

The loop continues until the ray either leaves the volume, or the accumulated color has

become opaque (α = 1). The iterative computation of the sum is done using front-to-back

compositing equations [3]:

Ĉi = Ĉi−1 +(1−αi−1)Ĉ(i∆s)

αi = αi−1 +(1−αi−1)α(i∆s)

To render an image of the volume, we need to trace a ray from the eye through the

volume, and perform the above iteration for each ray intersecting the volume. We implement

the ray marching process in the fragment shader where each ray (pixel) is independent of

one another.

3
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Chapter 2: Volume Rendering with Structured Grid Data

2.1 Motivation

Before working with unstructured grid data, implementing a standard volume renderer

with structured data would cover most of the fundamentals behind volume rendering. This

includes setting up the WebGPU canvas, scene, and choosing a software design pattern that

would be used for the project [1]. The goal of this portion of the project is to have all of the

basic systems of volume rendering such as ray-marching, color and alpha accumulation, and

overall setup of the scene ready for tetrahedra volume rendering.

2.2 Background

To implement structured volume rendering, you first setup the block of data as a set of

voxels that you want to march through. Each voxel (volumetric pixel) contains a data point

from the dataset. With the camera position as the origin of the ray, we first detect if that

ray intersects with the structured grid data. Once an intersection is detected, we want to

march the ray through the cube, gathering information about each voxel as we do so. This

information is accumulated to a final color and alpha values which is then returned by the

fragment shader.

As we march the ray through the structured volumetric data, we use trilinear interpolation

to determine which voxel the ray has collided with. WebGPU supports 3D textures using

4
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the textureSample function, which does the trilinear interpolation for us. We then find the

initial color and alpha values based on a given voxel and transfer function. We then blend

the total color and alpha values with the color and alpha value at a specific voxel [5].

Figure 2.1: Voxel Grid

2.3 Implementation

Listing 2.1: Ray Volume Bounds Intersection Test [5]
/ / S t ep 1 : Normal i ze t h e view r a y
v a r r a y D i r : vec3 <f32 > = n o r m a l i z e ( f r a g m e n t I n p u t . r a y _ d i r e c t i o n ) ;

/ / S t ep 2 : I n t e r s e c t t h e r a y wi th t h e
/ / volume bounds t o f i n d t h e i n t e r v a l
/ / a l o n g t h e r a y o v e r l a p p e d by t h e volume .
v a r t _ h i t : vec2 <f32 > =

i n t e r s e c t _ b o x ( f r a g m e n t I n p u t . e y e P o s i t i o n , r a y D i r ) ;
v a r t _ e n t e r = t _ h i t . x ;
v a r t _ e x i t = t _ h i t . y ;
/ / So we don ’ t sample v o x e l s be h i nd t h e eye
t _ e n t e r = max ( t _ e n t e r , 0 . 0 ) ;

5
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Listing 2.2: Compute the step size to march through the grid [5]
v a r d t _ v e c : vec3 <f32 > =

1 . 0 / ( vec3 <f32 >( g r i d _ s i z e ) * abs ( r a y D i r ) ) ;
v a r d t _ s c a l e : f32 = 1 . 0 ;
v a r d t : f32 = d t _ s c a l e * min ( d t _ v e c . x , min ( d t _ v e c . y , d t _ v e c . z ) ) ;

Listing 2.3: Calculate starting point and initial color [5]
v a r p : vec3 <f32 > = f r a g m e n t I n p u t . e y e P o s i t i o n + t _ e n t e r * r a y D i r ;
v a r c o l o r : vec4 <f32 > = vec4 <f32 > ( 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ) ;

Listing 2.4: Traversing the volume [5]
f o r ( v a r t = t _ e n t e r ; t < t _ e x i t ; t += d t ) {

/ / Sample t h e volume
v a r v a l : f32 = t e x t u r e S a m p l e L e v e l ( volume , t e x _ s a m p l e r , p , 0 . 0 ) . r ;
v a r v a l _ c o l o r : vec4 <f32 > = vec4 <f32 >( t e x t u r e S a m p l e L e v e l (

colormap , t e x _ s a m p l e r , vec2 <f32 >( va l , 0 . 5 ) , 0 . 0 ) . rgb , v a l ) ;

/ / O p a c i t y c o r r e c t i o n
v a l _ c o l o r . a = 1 . 0 − pow ( 1 . 0 − v a l _ c o l o r . a , d t _ s c a l e ) ;

/ / Accumulate t h e c o l o r and o p a c i t y
v a r tmp : vec3 <f32 > = c o l o r . rgb +

( 1 . 0 − c o l o r . a ) * v a l _ c o l o r . a * v a l _ c o l o r . xyz ;
c o l o r . r = tmp . r ;
c o l o r . g = tmp . g ;
c o l o r . b = tmp . b ;
c o l o r . a += ( 1 . 0 − c o l o r . a ) * v a l _ c o l o r . a ;

/ / Breaks o u t o f t h e loop when t h e c o l o r i s n e a r opaque
i f ( c o l o r . a >= 0 . 9 5 ) {

b r e a k ;
}
p += r a y D i r * d t ;

}

r e t u r n vec4 <f32 >( t e x t u r e S a m p l e ( volume , t e x _ s a m p l e r , p ) . rgb , 1 . 0 )

6
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2.4 Next Steps

With the logic for volume renderering strucutred data complete, this sets up all the basic

components for starting a tetrahedra volume renderer for unstructured data. I’ve learned how

to setup the graphics pipeline in WebGPU. This includes setting up the GPU bindings, vertex

buffer, index buffers, and depth buffer. I’ve also setup the color and alpha accumulation

portions and added a simple transfer function.

For a tetrahedral volume renderer however, many things will need to change. The

ray marching step will also change from marching through a structured grid of voxels, to

connected tetrahedra. To do so, we need to determine the exit face for each tetrahedron

and check if that face is connected to another tetrahedron. If so, we need to march towards

the next tet until the ray exits the mesh entirely. Lastly, instead of checking for ray-box

intersection, we need to check for ray-triangle intersection.

7
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Chapter 3: Tetrahedral Volume Rendering of Unstructured Grid Data

3.1 Background

Depending on the field, most data a scientist can collect can be in the form of unstructured

data. Unstructured data is data that does not have any uniform structure. Examples of this

kind of data include images, audio, and video files. Because a lot of data a scientist can

generate can be unstructured, tetrahedral volume rendering arose as method for this sort of

data. Instead of voxels, rays are marched through tetrahedral elements. The fundamentals of

volume rendering of structured grid data remain the same.

Tetrahedral marching algorithms leverage the simplicity of tetrahedral elements to

efficiently traverse and render the volumetric dataset. This is done by iteratively marching

through the tetrahedral elements, computing the intersection between rays and tetrahedra,

then accumulating the color and alpha channels along the way [4].

3.2 Design

First, I needed to be able to read the vertices and indices off of a tetrahedral mesh that’s

stored in a .VTU file that is readable by ParaView. Once I have the basic information of

the tetrahedral mesh as a list of vertices and indices, the file is uploaded to a Github data

server. My program starts by fetching the required data from Github, the performs the

pre-processing steps before finally rendering the result.

8

Docusign Envelope ID: A9AF9FF5-2B1D-43E1-9480-19BEFCA06618



Figure 3.1: Program Overview

To initialy visualize the data, the tetrahedral mesh needed to be represented as a triangle

mesh. I extracted the shell to render the mesh as a surface, then assigned each triangle a

random color to easily differentiate them.

9
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Figure 3.2: Surface mesh representation of tetrahedral mesh

In order to determine the triangle currently the fragment shader is currently working

on, I developed a way to determine the triangle based off of the vertex. In order to do so,

each vertex must be unique (no sharing of vertices). This would have been a trivial task in

WebGL where you have access to the gl_PrimitiveID (contains the index of the current

primitive).

vertexOutput.triangle_id = u32(ceil(f32(vertexInput.v_id) * 0.33333));

Once the triangle ID has been determined, it’s passed to the fragment shader with no

interpolation since we don’t want it changing per pixel.

Ray casting along a tetrahedral mesh depends on ray-connectivity. Tetrahedrons are

neighbors if they share a single face. This makes a continuous path of tetrahedra to traverse.

If they do, we can traverse them until we reach the exit face. If a face does not connect two

10
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tetrahedra, then that face is a shell-face. Once an exit shell-face is detected, the ray exits the

mesh completely. Along the way, we accumulate the color and alpha values.

Once you determine an intersection occurs with a face, you calculate the barycentric

coordinates. These values are used to interpolate and blend datapoints across the surface of

a triangle.

Figure 3.3: Coloring a triangles of a single tetrahedron based off of its barycentric coordi-
nates

11
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Figure 3.4: Barycentric coordinates for each triangle of the entire mesh

In order to determine if tetrahedra traversal is working correctly, I counted the number

of intersections when traversing a tetrahedral mesh.

Figure 3.5: Intersections that indicate tetrahedra traversal

12
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3.3 Implementation

In the vertex shader, I calculated the triangle_ID based off of the unique vertex.

vertexOutput.triangle_id = u32(ceil(f32(vertexInput.v_id) * 0.33333));

The flat keyword is used because we do not want to interpolate the position of the camera,

nor the triangle ID.

Listing 3.1: Input to the fragment shader
s t r u c t F r a g m e n t I n p u t {

@ b u i l t i n ( p o s i t i o n ) p i x e l : vec4 <f32 > ,
@ lo c a t i o n ( 0 ) r a y _ d i r e c t i o n : vec3 <f32 > ,
@ lo c a t i o n ( 1 ) @ i n t e r p o l a t e ( f l a t ) e y e P o s i t i o n : vec3 <f32 > ,
@ lo c a t i o n ( 3 ) @ i n t e r p o l a t e ( f l a t ) t r i a n g l e _ i d : u32

} ;

The next step is to calculate the barycentric coordinates based off of the vertices of

the triangle, the origin, and the normalized ray direction. The barycentric coordinates are

multiplied with the function data. Afterwards, it is passed to a transfer function and we

obtain a specific color value for that point in the tetrahedral mesh. We accumulate the color

and alpha channels (same as voxel direct volume rendering) while traversing the tetrahedral

mesh. The final accumulated color and alpha values are returned and presented in the

graphics window.

13
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Listing 3.2: Tetrahedral Mesh Traversal Psuedocode
v a r accum_co lo r : vec3 <f32 > = vec3 <f32 > ( 0 . 0 , 0 . 0 , 0 . 0 ) ;
v a r accum_alpha : f32 = 0 . 0 ;
w h i l e ( t r u e ) {

accum_co lo r += c a l c u l a t e C o l o r ( ) ;
accum_alpha += c a l c u l a t e A l p h a ( ) ;

t r i a n g l e _ i d =
f i n d _ e x i t _ t r i a n g l e ( t r i a n g l e _ i d , t e t r a h e d r o n _ i d , O, D ) ;

/ / i f n e x t t e t i s −1 ,
/ / t h e r a y has e x i t e d t h e mesh
v a r t e t I D : i 3 2 = f i n d _ n e x t _ t e t r a h e d r o n ( t r i a n g l e _ i d ) ;
i f ( t e t I D == −1) {

b r e a k ;
} e l s e {

t e t r a h e d r o n _ i d = u32 ( t e t I D ) ;
}

}
r e t u r n vec4 <f32 >( accum_color , accum_alpha ) ;

14
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3.4 Issues with Rendering Final Results

The tetrahedral renderer was developed to visualize the turbulent airflow around a golf

ball. One of the biggest issues I’ve been having with the renderer is to upload the data to my

program. Currently, the datasets are all stored on a github repository for my project. It reads

the raw text file that my VTK python program generates and extracts the relevant data from

it such as vertices, indices, and turbulence values. The bottleneck in this process comes

from both reading in the data from the server and doing the pre-processing step where my

program ensures each vertex is unique. These pre-processing steps slow down the program

significantly.

Figure 3.6: Turbulent airflow around a golf ball

I’ve chosen a much smaller portion of the whole mesh to render as a result of how my

program reads the mesh from the repository. As I will mention in the future work portion,

15
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most of the pre-processing steps that get the mesh ready for the ray marching process could

be moved to the compute shaders.

Figure 3.7: Smaller portion of Figure 3.6

Some issues I’m having is how I’m traversing this mesh. This is likely due to how I’m

moving from one tetrahedron to the other. Another issue is that this smaller mesh was taking

too long for my program to render the final results on screen. I suspect this might be because

of how many times the ray triangle intersection test is performed. Including a bounding

volume hierarchy is something that could significantly speed up this portion of the program.

Once these two issues are resolved, the tetrahedral renderer would be working as expected.

16
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Chapter 4: Future Work

Improving performance would be done by moving setup tasks to the compute shaders.

For example, the creation of unique vertices and unique indices could be moved. The

function that handles extracting the shell for rendering of the surface of the tetrahedral mesh

could also be moved. Adding support for a bounding volume hierarchy (BVH) tree would

improve ray-triangle intersection performance.

I would also want to add a light source as to illuminate and make the renderer look

more realistic. Once a light source has been added, the next step would be to increase

the rendering quality by adding effects such as gradient, volumetric shadows, and ambient

occlusion. While my project has been focused on visualizing a static mesh, I wouldn’t mind

seeing if there’s a way I could add a feature for fluid and gas simulations.

Finally I would like to add a feature where scientists woud be able to upload their own

data and run it through the renderer to see their results. I would include sliders for different

features such as turning shadows on and off, increasing light strength, and being able to

adjust the color map for the transfer function.

17
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Chapter 5: Conclusion

In this chapter, I summarize the status of the work presented in this report, and outline

future plans [2].

5.1 Summary

I implemented a volume rendererer for strucutred data. Marched a ray through a series of

voxels, and accumulated the color and alpha channels based off of that data. Once complete,

I used it as a template to start developing the tetrahedral volume renderer, but had signi

Setting up the data currently requires a series of computationally expensive pre-processing

steps. Most of these steps would be resolved by moving them to the compute shaders.

Both datasets I worked with were relatively small, so I wasn’t testing performance. The

real next step for this project (after dealing with the numerous performance issues) would

be to implement one of the efficient ways of encoding the information of a tetrahedron, thus

increasing performance [4].

18
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